Nobel Prize winning biologist: ‘When we come to look back on this, the damage done by lockdown will exceed any saving of lives by a huge factor

As he is careful to point out, Professor Michael Levitt is not an epidemiologist. He’s Professor of Structural Biology at the Stanford School of Medicine, and winner of the 2013 Nobel Prize for Chemistry for “the development of multiscale models for complex chemical systems.” He’s a numbers guy — as he told us in our interview, his wife says he loves numbers more than her — but then, much of modern science is really about statistics (as his detractors never tire of pointing out, Professor Neil Ferguson is a theoretical physicist by training).

With a purely statistical perspective, he has been playing close attention to the Covid-19 pandemic since January, when most of us were not even aware of it. He first spoke out in early February, when through analysing the numbers of cases and deaths in Hubei province he predicted with remarkable accuracy that the epidemic in that province would top out at around 3,250 deaths.

His observation is a simple one: that in outbreak after outbreak of this disease, a similar mathematical pattern is observable regardless of government interventions. After around a two week exponential growth of cases (and, subsequently, deaths) some kind of break kicks in, and growth starts slowing down. The curve quickly becomes “sub-exponential”.

This may seem like a technical distinction, but its implications are profound. The ‘unmitigated’ scenarios modelled by (among others) Imperial College, and which tilted governments across the world into drastic action, relied on a presumption of continued exponential growth — that with a consistent R number of significantly above 1 and a consistent death rate, very quickly the majority of the population would be infected and huge numbers of deaths would be recorded. But Professor Levitt’s point is that that hasn’t actually happened anywhere, even in countries that have been relatively lax in their responses.



h/t LSR