QUESTION ASKED: Is every scientific article a fraud? The Many Faces of Scientific Fraud.

The most proven scientific theory I am aware of is the notion that science advances 1 funeral at a time

via quillette:

Is every scientific article a fraud? This question may seem puzzling to those outside the scientific community. After all, anyone who took a philosophy course in college is likely to think of laboratory work as eminently rational. The assumption is that a researcher faced with an enigma posed by nature formulates a hypothesis, then conceives an experiment to test its validity. The archetypal presentation of articles in the life sciences follows this fine intellectual form: After explaining why a particular question could be asked (introduction) and describing how he or she intends to proceed to answer it (materials and methods), the researcher describes the content of the experiments (results), then interprets them (discussion).

This is more or less the outline followed by millions of scientific articles published every year throughout the world. It has the virtue of being clear and solid in its logic. It appears transparent and free of any presuppositions. However, as every researcher knows, it is pure falsehood. In reality, nothing takes place the way it is described in a scientific article. The experiments were carried out in a far more disordered manner, in stages far less logical than those related in the article.

If you look at it that way, a scientific article is a kind of trick. In a radio conversation broadcast by the BBC in 1963, the British scientist Peter Medawar, cowinner of the Nobel Prize in Physiology or Medicine in 1960, asked, “Is the scientific paper a fraud?” As was announced from the outset of the program, his answer was unhesitatingly positive. “The scientific paper in its orthodox form does embody a totally mistaken conception, even a travesty, of the nature of scientific thought.”

To demonstrate, Medawar begins by giving a caustically lucid description of scientific articles in the 1960s, one that happens to remain accurate to this day: “First, there is a section called ‘introduction’ in which you merely describe the general field in which your scientific talents are going to be exercised, followed by a section called ‘previous work’ in which you concede, more or less graciously, that others have dimly groped towards the fundamental truths that you are now about to expound.”

According to Medawar, the “methods” section is not problematic. However, he unleashes his delightfully witty eloquence on the “results” section: “[It] consists of a stream of factual information in which it is considered extremely bad form to discuss the significance of the results you are getting. You have to pretend firmly that your mind is, so to speak, a virgin receptacle, an empty vessel, for information which floods into it from the eternal world for no reason which you yourself have revealed.”

Was Medawar a curmudgeon? An excessively suspicious mind, overly partial to epistemology? Let’s hear what another Nobel laureate in physiology or medicine (1965), the Frenchman François Jacob, has to say. The voice he adopts in his autobiography is more literary than Medawar’s, but no less evocative:

Science is above all a world of ideas in motion. To write an account of research is to immobilize these ideas; to freeze them; it’s like describing a horse race from a snapshot. It also transforms the very nature of research; formalizes it. Writing substitutes a well­ordered train of concepts and experiments for a jumble of untidy efforts, of attempts born of a passion to understand. But also born of visions, dreams, unexpected connections, often childlike simplifications, and soundings directed at random, with no real idea of what they will turn up—in short, the disorder and agitation that animates a laboratory.

Following through with his assessment, Jacob comes to wonder whether the sacrosanct objectivity to which scientists claim to adhere might not be masking a permanent and seriously harmful reconstruction of the researcher’s work:

Still, as the work progresses, it is tempting to try to sort out which parts are due to luck and which to inspiration. But for a piece of work to be accepted, for a new way of thinking to be adopted, you have to purge the research of any emotional or irrational dross. Remove from it any whiff of the personal, any human odor. Embark on the high road that leads from stuttering youth to blooming maturity. Replace the real order of events and discoveries by what would have been the logical order, the order that should have been followed had the conclusion been known from the start. There is something of a ritual in the presentation of scientific results. A little like writing the history of war based only on official staff reports.

Any scientific article must be considered a reconstruction, an account, a clear and precise narrative, a good story. But the story is often too good, too logical, too coherent. In a way, all researchers are cooks, given that they cannot write a scientific article without arranging their data to present it in the most convincing, appealing way. The history of science is full of examples of researchers embellishing their experimental results to make them conform to simple, logical, coherent theory.

What could be simpler, for instance, than Gregor Mendel’s three laws on the inheritance of traits, which are among the rare laws found in biology? The life story of Mendel, the botanist monk of Brno, has often been told. High-school students learn that Mendel crossbred smooth­seeded peas and wrinkle­seeded peas. In the first generation, all the peas were smooth­seeded. The wrinkled trait seemed to have disappeared. Yet it reappeared in the second generation, in exactly one­quarter of the peas, through the crossbreeding of first­generation plants. After reflecting on these experiments, Mendel formalized the three rules in Experiments in Plant Hybridization (1865). These were later qualified as laws and now bear his name.

Largely ignored in his lifetime, Mendel’s work was rediscovered at the beginning of the twentieth century and is now considered the root of modern genetics. But this rediscovery was accompanied by a close rereading of his results. The British biologist and mathematician Ronald Fisher, after whom a famous statistical test is named, was one of Mendel’s most astute readers. In 1936, he calculated that Mendel only had seven out of 100,000 chances to produce exactly one­quarter of wrinkle­seeded peas by crossbreeding generations. The 25–75 percent proportion is accurate, but given its probabilistic nature, it can only be observed in very large numbers of crossbreeds, far more than those described in Mendel’s dissertation, which only reports the use of ten plants, though these produced 5,475 smooth-­seeded peas and 1,575 wrinkle­-seeded peas. The obvious conclusion is that Mendel or one of his collaborators more or less consciously arranged the counts to conform to the rule that Mendel had probably intuited. This we can only speculate on, given that Mendel’s archives were not preserved.