Researchers discover new method for turning nearly ANY object into a data storage unit

Researchers have now collaborated to develop a means of storing extensive information in almost any object. “With this method, we can integrate 3D-printing instructions into an object, so that after decades or even centuries, it will be possible to obtain those instructions directly from the object itself,” explains Robert Grass, Professor at the Department of Chemistry and Applied Biosciences. The way of storing this information is the same as for living things: in DNA molecules.

“DNA of Things”

Several developments of the past few years have made this advance possible. One of them is Grass’s method for marking products with a DNA “barcode” embedded in miniscule glass beads. These nanobeads have various uses; for example, as tracers for geological tests, or as markers for high-quality foodstuffs, thus distinguishing them from counterfeits. The barcode is relatively short: just a 100-bit code (100 places filled with “0”s or “1”s). This technology has now been commercialised by ETH spin-off Haelixa.

At the same time, it has become possible to store enormous data volumes in DNA. Grass’s colleague Yaniv Erlich, an Israeli computer scientist, developed a method that theoretically makes it possible to store 215,000 terabytes of data in a single gram of DNA. And Grass himself was able to store an entire music album in DNA — the equivalent of 15 megabytes of data.

www.sciencedaily.com/releases/2019/12/191209110529.htm